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Multifilament structures in relativistic self-focusing
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A simple model is derived to prove the multifilament structure of relativistic self-focusing with ultraintense
lasers. Exact analytical solutions describing the transverse structure of waveguide channels with electron
cavitation, for which both the relativistic and ponderomotive nonlinearities are taken into account, are pre-
sented.
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I. INTRODUCTION

Recent development in laser technology has opened
the possibility of exploring previously unattainable regim
of laser-plasma interaction@1#. Intensities of the order o
1018 W/cm2 and higher can now be achieved, implying th
goals like compact sources for x-ray laser@2#, the fast ignitor
concept for inertial confinement fusion~ICF! @3#, and laser-
plasma based accelerators@4# might soon be within reach
However, a major effort is still required both numerical
and analytically in order to understand the nonlinear p
nomena that arise in the presence of such extremely
intensities of electromagnetic radiation. Good analytical
sight is also needed in order to make numerical simulati
possible and to interpret their results@5#.

One of the problems that have received particular att
tion is the combined effect of relativistic and striction~pon-
deromotive! nonlinearities, which occur in the propagatio
of superintense laser pulses through underdense pla
@i.e., plasmas withvp,v, wherevp5(4pnee

2/me)
1/2 is the

plasma frequency andv is the laser carrier frequency# @6#.
This problem is not fully understood yet and there is need
a self-consistent analytical description that does not vio
global charge conservation and plasma quasineutrality w
describing self-focusing and self-channeling@7#.

A common feature in the above mentioned scheme
that transport of laser radiation over considerable distan
well beyond the diffraction limit, and without significant en
ergy losses is required. In achieving this goal, nonlinear s
focusing and self-channeling play an important role. Un
the action of an intense laser pulse, electrons tend to be
distributed in the transverse direction as an effect of the p
deromotive pressure, the self-channeling phenomenon.
subsequent self-modification of the radial profile of the
fractive index is at the origin of the nonlinear self-focusi
and filamentation of the laser pulse. Nonlinear self-focus
and self-channeling offer a possibility for optical guiding
laser pulses in underdense pulses such as, for instance
underdense corona of an ICF target, through the formatio
‘‘hollow channels’’ @8#, as experimentally observed by se
eral groups@9,10#.

As was shown in@11#, relativistic self-focusing shows
qualitatively different features for ultraintense lasers. T
ponderomotive force of superstrong fields expels electro
thus producing ‘‘vacuum channels’’ that guide the radiatio
and stable channeling with power higher than the critical o
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can take place@12#. However, as noticed in@11,13#, analyti-
cal descriptions led to the appearance of negative elec
densities. This problem was solved by setting the chan
boundary positions exactly at the point where the elect
density became zero. Feitet al. @7# showed that this proce
dure did not conserve the global charge and proposed inc
ing the electron temperature effect, which, however, was
self-consistently evaluated~the temperature was assumed
be derived from experimental conditions!. Recently, we
noted that for an overdense plasma a self-consistent des
tion of self-induced transparency is possible that autom
cally takes into account global charge conservation thro
Poisson’s equation@14#. The strong analogies between on
dimensional~1D! overdense and 2D underdense plasmas
low for an exact analysis of the stationary stage of elect
cavitation due to the joint effects of relativistic and strictio
nonlinearities in underdense plasmas. This analysis lead
an exact analytical description of the transverse structu
generated by relativistic self-focusing and also demonstr
its multifilament nature.

Depending on the incident power and intensity distrib
tion, several qualitatively different solutions may occur. O
aim is to give an exact analytical description of the station
stage of the fundamental configurations. We will show th
if the incident power is relatively low and the intensity h
its maximum on axis, the plasma will react by generating
stationary stage with a single channel acting as an opt
guide for the propagating radiation. If the incident power
increased and the intensity instead has its minimum on
~a higher order laser mode!, then the final stationary stag
will display two symmetric channels. Finally, for eve
higher incident powers and maximum on-axis incident inte
sities, three channels will be generated, and so on, with
critical power for channel formation depending on the unp
turbed plasma density and the wave number of the propa
ing radiation. Of particular interest is the fact that the
structures can be interpreted as the final stationary stag
the filamentation instability, as shown by the numeric
simulations presented in@5#.

In this paper, we introduce in Sec. II the model equatio
and the approximations we will use to describe electron ca
tation in a two-dimensional underdense plasma. The gen
is discussed in Sec. III and our results for single- and mu
channel structures in 2D planar geometry are presented in
following sections, following a brief discussion of the phys
cal mechanisms behind the generation of such structures
nally, some conclusions are summarized in Sec. VI.
©2001 The American Physical Society12-1
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II. THE MODEL

Let us consider the propagation of electromagnetic ra
tion in a homogeneous plasma. A complete description
based on Maxwell’s equations for the propagating laser
diation plus a model describing the plasma response. Fo
problem of interest, an important simplification comes fro
the physical context. Considering short pulses with lengtt
such thatvpe

21!t!vpi
21 , the ion dynamics can be neglecte

@12#. Furthermore, we will not be concerned with wake fie
generation@13#, since the pulse is long enough to allow us
disregard longitudinal charge separation@7#. Finally, all ther-
mal effects will be disregarded since, at these high inte
ties, electrons are driven to relativistic velocities in just a f
optical cycles and the electron pressure gradient is neglig
compared to the ponderomotive pressure@15#.

These assumptions define the model we are using to
scribe our plasma. The ions are considered as an immo
neutralizing background and the electrons as a cold rela
istic fluid. Our set of self-consistent equations derived fro
Maxwell’s equations and the equation of motion for the el
tron component, assuming the Coulomb gauge, reads

¹2A2
1

c2

]2A

]t2
5

1

c

]

]t
“w1

4p

c
Nev, ~1!

¹2w54pe~N2N0!, ~2!

mgv5
e

c
A1“c, ~3!

]c

]t
5ew2mc2~g21!, ~4!

“•A50. ~5!

Hereg51/A12v2/c2 is the relativistic factor,N is the elec-
tron density,N0 is the equilibrium density,2e andm are the
electron charge and mass, respectively,A is the electromag-
netic vector potential,w is the electrostatic scalar potenti
andc is a scalar function that expresses the electron can
cal momentum. Details of the derivation of this model can
found in @8#. Equations~3! and~4! imply that we are assum
ing vortex-free motion of the electrons. Taking the dive
gence of Eq.~1! and using Eqs.~2! and ~5! we find that the
charge conservation law

]N

]t
1“•~Nv!50 ~6!

is automatically satisfied, i.e., the total charge is conserv
However, when dealing with necessarily simplified mod
describing the stationary regime in the presence of elec
cavitation phenomena, the condition of plasma quasineu
ity is not obviously conserved@11–13#. This point must be
carefully discussed when constructing solutions and it w
lead to the breaking of the Hamiltonian model, thus allowi
for multifilament structures.
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The assumption made on the pulse duration implies
the electron fluid has time to approach a quasi-steady-s
@16#. Therefore, it is interesting to describe what kind
stationary state the system will reach, neglecting any tr
sient phenomena. This leads to further simplification,
cause we can neglect the time dependence in Eq.~4! and,
sincev before the passage of the laser pulse must be zer
follows from Eqs.~3! and ~4! that c50.

In order to single out the fast optical time scale we ad
the slowly varying envelope approximation, factorizing t
normalized vector potential as

eA

mc2
5a'~r'!r'exp@ i ~hz2vt !#1c.c. ~7!

Assuming the paraxial approximationk'!h, wherek' is the
transverse component of the laser wave number andh is the
propagation constant, the parallel component of the ve
potential is negligible if compared to the transverse ones
the incident radiation may be assumed to be circularly po
ized without loss of generality. In what follows, we will dro
the subscript denoting the perpendicular component of
various quantities. The resulting system of equations, aft
few algebraic manipulations, is

¹2a1S 12
an

g Da50, ~8!

¹2f5a~n21!, ~9!

f5g21 if and only if nÞ0, ~10!

g5A11a2, ~11!

where

a5
n0

12h2/k2
, ~12!

k5v/c is the vacuum wave number and we have introduc
the normalizationn05N0 /Ncr with Ncr5mv2/(4pe2), n
5N/N0 , f5ew/(mc2), r5kA12h2/k2r' .

III. GENERAL ANALYSIS

Let us consider a two-dimensional geometry for a plas
extending in thez direction, i.e., along the laser propagatio
direction. We will restrict ourselves to a 1D transverse mo
in order to emphasize the main features of multifilame
structures. In Eqs.~8!–~11! the propagation constanth plays
the role of a free parameter which, together with the ba
ground plasma densityn0, defines what kind of filamen
structures can be realized as a final state of the self-focu
evolution. In reality, it would depend on several paramet
and factors such as the laser power, the geometrical con
ration~the angle of focusing, for instance!, and the prehistory
of the process.

The self-channeling we are interested in is realized o
when a.1, i.e., for underdense plasmas when 1.h/k
2-2
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MULTIFILAMENT STRUCTURES IN RELATIVISTIC . . . PHYSICAL REVIEW E64 016412
.A12n0 and for overdense plasmas withn0.1 whenh/k
,1.

The complete mathematical analogy between the pre
model and the one introduced in@17# suggests that ou
plasma will react to the laser action with the formation
regions depleted of electrons, where the laser electrom
netic radiation is trapped, a consequence of the well kno
phenomenon of electron cavitation and channeling. Electr
tend to be expelled from the focal spot by the laser ponde
motive force and, at the same time, under such extreme
ditions, they acquire relativistic quiver velocities. These
fects both contribute to a self-induced modification of t
radial profile of the refractive index and a consequent n
linear trapping of the laser radiation in finite plasma regio
This modification is the basic mechanism in the optical gu
ing of laser pulses in plasmas. It is possible to give an ex
analytical description of the asymptotic stationary plasm
field structures generated in the transverse direction for
ferent values ofa. As we will see, these structures consist
one or more channels, depending on the corresponding
dent power. The most delicate point in the analysis will
the determination of such structures complying with glo
charge conservation.

Equations~8!–~11! were analyzed in detail in@13# and
also in @18# with respect to both underdense and overde
plasmas and solutions were found in the form of continu
functions. Fundamental to those analysis is the Hamilton
structure of the set of equations~8!–~11!, which reads

HE5
1

2~11a2!
a822

1

2
~2aA11a22a2!, ~13!

where the prime denotes the derivative with respect to
transverse coordinatex. As n(x)→1 and botha(x) and
a8(x) vanish forx→`, the integral of motion equals

HE5HE0[2a. ~14!

It follows that there is an exact solitonlike analytical soluti
given by

a~x!5
Am cosh@ u«0u1/2~x2x(0)!#

a cosh2@ u«0u1/2~x2x(0)!#2u«0u
~15!

where «0512a and the parameterx(0) defines the peak
position of the function ~15!, which is given by Am
52@a(a21)#1/2. Once this solution is known, we also hav
a description for the electron density through Poisson’s eq
tion ~9! and the equation of motion~10!:

n53~11a2!12
A11a2

a
~HE2a2!. ~16!

The minimum electron density in a cavity is given bynmin
5124(a21)2, which implies that, fora.1.5, this solution
leads to the unphysical result of a negative electron den
Therefore, ifa<1.5, i.e., for propagation constants lying
01641
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the intervalA122n0/3>h/k.A12n0, we have solutions
expressed by the continuous functions~15! and ~16!.

The field and density structures and the correspond
power related to the propagation constant are presente
Fig. 1. It should be emphasized that, fora<1.5, since the
system is fully described by the Hamiltonian~13!, there are
no other structures except this single-filament one. The
portant question is what will happen for higher incident po
ers or, in other words, fora.1.5. The procedure for con
structing a solution followed in@11,12,15#, which consisted
in assuming the electron density to vanish within the inter
where the solution for the density~16! is negative, led to
nonconservation of the global charge. However, what is h
pening is that the ponderomotive force is pushing electr
away from the central axis, while the force due to char
separation acts in the opposite direction. Thus, when an e
librium is reached, we have the formation of a stationa
structure consisting of a channel emptied of its electro
This means that the global structure of the solution cons
of two parts, the first one described by the Hamiltonian~13!,
while the second, describing the depletion regions where
electron density vanishes, has the typical vacuum Ham
tonian:

HV5
1

2
~a821a2!. ~17!

In Fig. 2 the phase portrait of the full system is presented
the single-filament case witha52 while in Fig. 3 the same
phase portrait is shown for a more complicated multifilam
case witha52.

The continuous solitonlike solution described by Eq.~15!
corresponds here to the separatrix trajectory and its star
and final point isa50, a850. As pointed out, this solution
breaks down for higher values ofa and we indicate on the
phase portrait the curve beyond which the electron den
~16! formally becomes negative.

FIG. 1. Plasma-field structures~dashed line! and electron den-
sity distribution~continuous line! for the case of a single filament in
an underdense plasma, for a fixed value ofa less then 1.5. In this
casea51.4. The power needed to generate a single-filament st
ture is shown in the inset as a function of the parametera for a less
then 1.5. All quantities are dimensionless.
2-3
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Beyond the limit curve for the electron density we have
introduce the ‘‘vacuum’’ part of the solution. Our system h
left the separatrix and has started to move along the vac
trajectory. The boundary position up to which the electro
are displaced is determined by the equilibrium condition
tween the two forces acting on them, as described by
equation of motion

f85g8 ~18!

and by the conservation of the total charge, which me
that, in order to conserve the total charge, the boundary
sitions can now be determined by inserting the equilibri
condition ~18! into Poisson’s equation and integrating it.

FIG. 2. Phase portrait for a system that develops a sin
filament structure. The thick line represents the trajectory follow
by the system, starting from the separatrix ata50, a850, then
moving on along the vacuum trajectory to finally come back to
starting point along the separatrix again, which represents the s
metrical plasma region. The corresponding plasma-field struct
are illustrated in Fig. 4 below.

FIG. 3. Phase portrait for a more complicated case with mult
filaments. The thick line represents the trajectory in the case of
filaments. Solid lines represent trajectories relative to electron
ers while dashed lines are relative to depletion regions and the
dashed lines separate regions with positive and negative ele
density, as follows from Eq.~16!.
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IV. SINGLE-FILAMENT SOLUTIONS

Let us consider a localized solution with one peak for t
intensity. Its structure is defined by the closed trajecto
(0-1-18-0) shown in Fig. 2. We will treat this kind of solu
tion as a single-filament solution.

Integrating Poisson’s equation over the whole interval
obtain

xd52
1

a

adad8

A11ad
2

, ~19!

wheread is the field amplitude at the boundary positionxd .
At the same time, we have to match the field in the vacu
channel

a~x!5AV cosx ~20!

and its first derivative to the field and its first derivative
the plasma region, that is,

AV
25ad

21ad8
2 ~21!

and

xd52arctanS ad8

ad
D . ~22!

Given the integral of motionHE52a, from the two equa-
tions for xd we obtain a transcendental equation for t
boundary amplitudead ,

tanS ad@2a~A11ad
221!2ad

2#1/2

a
D

5
A11ad

2

ad
@2a~A11ad

221!2ad
2#1/2, ~23!

which can be solved numerically, so that now we know e
erything about the structures generated in this case~see Fig.
4!. It is important to be careful when solving this equatio
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FIG. 4. Plasma-field structures~dashed line! and electron den-
sity distribution ~continuous line! for the case of a single channe
for a fixed value ofa52. All quantities are dimensionless.
2-4



firs

el

or
ate

va
he
he

du
d

nte

o
th

b
of
fy-
re
stic

o
ir-

en

re-
etr

ra
x-

on
sm
, b
ry

an
at
rely
ore
es-
ctly
-
-

h
c-
ven

at
-

of

re-
e

es.

uch

ut

t

of
he
try
al
the
re,
ian
in

he
om
on
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since it has multiple solutions, but we have to choose the
that satisfies the condition of charge conservation.

The calculation of the total power for this single-chann
configuration as a function ofa is straightforward, P
5*2`

1`a2(x)dx, and the result is presented in Fig. 5. F
comparison, we present here also the total power calcul
within the previous model, when the boundary positionxd
was assumed to be the one where the electron density
ished. In this case, the total charge not being conserved, t
was an excess of positive charge, which led to a much hig
power required in order to overcome the restoring force
to this charge excess. Consequently, the power neede
generate such structures was overestimated. It is also i
esting to see how, for increasing values ofa and conse-
quently increasing values of the required power, the width
the central vacuum channel becomes larger, but, after
initial rapid growth, its increase becomes slower~see the
inset in Fig. 5!.

It is interesting to note that analogous structures can
found in a cylindrical geometry, although with the help
numerical computations. As this work is focused on clari
ing the role of plasma neutrality when constructing structu
generated by the interplay of ponderomotive and relativi
nonlinearity, the extension of these same structures to a m
realistic and important axisymmetrical configuration, requ
ing more attention to the complications due to higher dim
sionality, will be presented separately.

V. MULTIFILAMENT STRUCTURES

It is evident from our analysis that, due to the requi
ments of global charge conservation and to the symm
imposed with respect to thez axis, for a fixeda the single-
filament configuration and the power necessary to gene
this structure are uniquely determined. If this power is e
ceeded, the incident electromagnetic radiation is str
enough to spread along the transverse direction of the pla
channel over a distance larger than in the previous case
still finite. For a sufficiently strong power, the final stationa

FIG. 5. Total power~continuous line! and channel widthw
52xd ~inset! for the single-filament case. For comparison, t
dashed line shows the total power calculated according to the c
monly used model, without taking into account global charge c
servation. All quantities are dimensionless.
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state will present a multiple channel structure which c
again be analytically described. It is important to note th
some of these structures cannot be considered as pu
higher order eigenstates of the initial equations and theref
their existence and nature is not obvious. The power nec
sary for generating each of these structures can be exa
calculated as well. As we will show, this allows for the defi
nition of a threshold power for the generation of multifila
ment structures.

Let us start with the case of an intensity distribution wit
a minimum on the symmetry axis. An example of the traje
tory in the phase space for the double-channel case is gi
in Fig. 3, indicated as (0-2-28-38-3-0). To construct the
field structure we can start from inside the plasma region
x→1`, where we know the integral of motion and the ex
pression for the decaying field and the electron density@see
Eqs. ~15! and ~16!, respectively#. When we come to the
depletion region there is a certain freedom in the choice
the boundary amplitudead , as we are going backward from
the last plasma region toward the central axis. The only
quirement forad is that the electron density must not b
negative; therefore we can fix the boundary amplitude~and
therefore the boundary positionxd as well! to any value up to
a maximum for which the density at the boundary vanish
This means that for a fixeda the two-peak solution is not
unique and there is a certain power range for generating s
a structure. For a givenad the field in the vacuum region,

a~x!5AV cos~x2w!, ~24!

is completely determined from the matching conditions, b
now the vacuum channel extends from thexd to a certainx1
~see Fig. 6! which is to be determined taking into accoun
charge conservation.

In order to construct a structure with only one degree
complexity more than for the single channel, we stop at t
next plasma layer, which will be centered on the symme
axis. An analytical expression for the field in this centr
plasma layer can be derived by solving the equation for
vector potential. Now the solution is not localized as befo
and therefore the boundary conditions and the Hamilton
HE5HE1.2a are not known. The solution is expressed
terms of two-parameter elliptic functions as

-
-

FIG. 6. Double-channel structure for a plasma with a fixeda
52 and maximum possible intensityad

2 at the last boundary~con-
tinuous line! and electron density distribution~dotted line!. All
quantities are dimensionless.
2-5
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where «15(a21112HE1)1/2, q5@(«11a)221#1/2 and q̄
5@(«11a11)/(«11a21)#1/2, while k5$@a22(«1

21)2#/4«1#1/2 and k̄5$@(«121)22a2#/(«111)22a2)%1/2

are the moduli of the elliptic integrals of the first kind, r
spectively, for the two cases. These solutions were prese
in @14# for the problem of self-induced transparency of
overdense plasma. Imposing the conservation of the t
charge by integrating Poisson’s equation fromx50 to x
5` with the equilibrium condition defined by the equatio
of motion@see Eq.~18!#, we obtain a transcendental equati
for the quantityj5x12xd :

j5g~j!2g~0!, ~26!

where

g~j!5
AV

2 sin@2~j1j0!#

2a@11AV
2 cos2~j1j0!#1/2

, j052arctanS ad8

ad
D .

~27!

The solution of this equation gives a complete description
the vacuum layer sincexd is already determined. A necessa
condition for this equation to have a nontrivial solution
that g8(j52j0).1, i.e.,

g8~j52j0!5
AV

2

a~11AV
2 !1/2

.1, ~28!

which cannot be satisfied unlessa>1.5. This leads to the
conclusion that ifa,1.5, that is, if the propagation consta
of the wave vectorh is not large enough, our system wi
never reach a stationary state and it will display only a
namical behavior with the electromagnetic perturbat
propagating along the transverse direction. Otherwise,
can numerically calculate how the minimum boundary inte

FIG. 7. Total power required to generate a double-channel st
ture versusa for the case of maximum possible intensity at the l
boundary and~inset! as a function of the boundary intensity fo
fixed a52.
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sity such that Eq.~26! still has a solution depends ona and
also find a solution of this equation and calculatex1. To
finally obtain a complete description of the central plas
layer we only have to apply the boundary conditions atx1 to
determine the parameters that are still unknown,HE1 and
x(1), while the symmetry axis is determined as the symme
axis of the elliptic function. In Fig. 6 a double-channel stru
ture is shown for fixeda and for maximum amplitude at th
last boundary~so that the electron density at this bounda
vanishes!. It should be noted that, for a fixed value of th
boundary amplitudead , the width of the vacuum channel
and the peak intensity in these channels increase witha.
Furthermore, the maximum possible boundary amplitude
self is an increasing function ofa and, for any given value of
this parameter, such a maximum amplitude determines
maximum power we can deliver to the plasma in order
generate a double-channel structure. Exceeding this m
mum power will force the system to generate a structure w
one more filament and therefore we can talk about a thre
old power for the generation of multi-filament structures.

In Fig. 7 we showPTotal calculated for varyinga and for
ad fixed to its maximum possible value. In the inset is sho
instead how the total power varies with the intensity at
last boundary. The apparently anomalous behavior for
boundary intensities is due to the fact that the left bran
corresponds to a different kind of two-filament solutio
whose phase portrait and field structures are presente
Figs. 8 and 9.

As can be seen following the trajectory (0-2-28-38-3-0),
in this case the field amplitude, once it leaves the separa
never crosses the zero point until it reaches the separ
again. For those periodic trajectories lying inside the sepa

c-
t

FIG. 8. Phase portrait for a system that develops a dou
filament structure. In this case the field amplitude never vanis
except at6` on the separatrix. The corresponding plasma-fi
structures are illustrated in Fig. 9.
a~x!55
2qcn@«1

1/2~x2x(1)!#

21@~q211!1/221#sn2@«1
1/2~x2x(1)!#

, 2a,HE1,a

2q̄sn$@~«111!22a2#1/2~x2x(1)!/2%

q̄22sn2$@~«111!22a2#1/2~x2x(1)!/2%
, HE1.a,

~25!
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trix, the HamiltonianHE1 is less than2a and the field so-
lutions for the electron layers assume a different form a
are now described in terms of elliptic functions as

a~x!5
~a2«121!$12~«1

1/2/«2!sn2@«2~x2x(1)!#%1/2

122~«1 /a1«121!sn2@«2~x2x(1)!#
,

~29!

where «15(a2111HE1)1/2, «25@a22(«121)2#/2, and
the modulus of the elliptic integral of the first kind isk
5«1

1/2/«2. The procedure to define the electron cavitati
boundaries is the same as the one followed previously
build the structures presented in Fig. 6.

The solution we have constructed and the correspond
choice of a closed one-cycle trajectory in the phase spac
not unique. We can pass a depletion region not only at
point 38 to form a one cycle trajectory, but also at the po
b8 in order to create a periodic trajectory such asb8-b-a-a8,
~see Fig. 3!. Following this trajectory means that we wi
have a new structure with new channels and plasma lay
which were not present in the double-channel structure
viously described.

We would like to underline the fact that the periodic tr
jectory shown in Fig. 3 corresponds to a particular config
ration as the pointsb8, a8, a, b are related by a complet
symmetry. It is possible to see what this means by looking
the field structures described by such a trajectory~see Fig.
10!: The central channels are completely symmetric; at e
boundary we have the same intensity. It is again the ne
sity for global charge conservation that leads, by integrat
Poisson’s equation, to a transcendental equation for the
at the boundary of the new plasma layer:

tanS ad@2HE112aA11ad
22ad

2#1/2

a
D

5
A11ad

2

ad
@2HE112aA11ad

22ad
2#1/2. ~30!

This equation is similar to Eq.~23! but now the Hamiltonian
valueHE5HE1 is the one defined for the new electron laye
In the case of a single-peak field distribution, this equat
had a unique solution; consequently we can add to the t

FIG. 9. Plasma-field structures for a higher order mode solu
where the field amplitude never vanishes except at6`.
01641
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filament distribution whole periodic cycles, i.e., even nu
bers of filaments, by jumping to consecutive vacuum traj
tories at the pointb8 or repeating the same vacuu
trajectories. This is shown in Fig. 10 where a six-filame
structure is presented, which corresponds to the trajec
(0-2-28-b8-a8-a-b-38-3-0), with two cycles along the peri
odic trajectoryb8-a8-a-b. Again, it is important to note tha
this structure, completely symmetric, is peculiar to a pla
geometry.

We can also add to the single-filament configuration
odd number of filaments, considering trajectories cor
sponding to a certain number of cycles plus half a cyc
Consider, for example, the trajectory (0-2-28-b8-b-4-48-0),
where the points 4,48 are symmetrical with 28,2, respec-
tively, which corresponds to a three-filament structure. T
result is shown for a fixed value ofa in Fig. 11.

Finally, in Fig. 12, we present on the same graph
calculated maximum powers as functions ofa for three of
the different cases we have analyzed, single, double,
triple channels. The same procedure that we have descr
may also be applied to the case presented in Fig. 8, wher
integer number of filaments can be added since a full cy
occurs within a half space of the phase portrait. Therefore

n FIG. 10. Six-channel structure for a plasma with fixeda52 and
maximum possible intensity at the last boundary~continuous line!
and electron density distribution~dotted line!. All quantities are
dimensionless.

FIG. 11. Three-channel structure for a plasma with fixeda52
and maximum possible intensity at the last boundary~continuous
line! and electron density distribution~dotted line!. All quantities
are dimensionless.
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using this procedure, we can construct multifilament so
tions that exist only fora.1.5 and represent plasma cha
nels with electron cavitation. They differ from each oth
because of the laser power transported along these cha
and, as there is a minimum laser power required for excit
such structures, we can define the power thresholds for
ating non-single-filament structures.

VI. CONCLUDING REMARKS

In conclusion, we have presented an exact analysis
self-channeling structures generated as a consequenc
relativistic self-focusing due to the interaction of ultrainten
laser radiation with an underdense plasma. In this analy
the plasma quasineutrality condition is accurately taken
consideration and this quantitatively affects some results
channeling laser power. This analysis allows us to prove
multifilament nature of the relativistic self-focusing and
calculate the threshold power for exciting multifilame
structures. Such a result is not achievable in media wit
local nonlinearity, like the Kerr one, because the govern
equation has an overall Hamiltonian structure. In the case
have analyzed, each electron cavitation channel corresp

FIG. 12. Total power as a function ofa for the three different
cases: single channel~continuous line!, double channel~dashed
line!, and triple channel~dotted line!. In each case, the amplitude
the last boundary was chosen as the maximum possible one.
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to a certain part of the trajectory followed by the system
the phase space, each part with its own Hamiltonian value
shown in Fig. 2. Concerning the definition of a thresho
power, it is interesting to see how filament structures w
regions depleted of electrons can be generated by the in
action if the parametera is greater than 1.5. Fora<1.5 we
have only single-filament field structures, with no depleti
regions. As soon asa exceeds 1.5 there are plasma regio
that are emptied of their electrons and the number of fi
ments thus generated increases with increasing incid
power. We can therefore define the maximum power incid
on a plasma witha51.5 as the real threshold power fo
generating non-single-filament structures~see Fig. 1!. The
same construction procedure followed for the single-filam
solution can then be easily extended to a more realistic
symmetrical case to obtain the analogs of Figs. 4, 6, an
while a real 2D transverse approach is needed for the m
tifilament structure problem, especially for the case p
sented in Fig. 10, where a number of equal filaments h
been added to the fundamental structure. To extend su
multifilament structure to a cylindrical geometry requir
particular attention and the inclusion of an azimuthal vorte
like dependence to take into account the complication du
higher dimensionality. Therefore it is not possible to simp
think of this generalization in terms of multiple ring configu
rations because the axial symmetry that holds for the s
plest single-filament structures can be broken for more co
plicated cases. We would also like to note that it
reasonable to expect these structures to be fairly stable on
time scale considered, since in channels emptied of t
electrons no further focusing or Raman instabilities can t
place. The extreme robustness of the fundamental struct
has been shown by numerical investigations; see, for
ample, Refs.@7#, @11#, and@12#.
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